The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in treated patients
نویسندگان
چکیده
Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.
منابع مشابه
Identification of Neuraminidase Gene Mutations of Influenza A/H3N2 Isolates in Mazandaran Province, 2016-2018
Background and purpose: Influenza is one of the viral infections of the respiratory system, which causes death in high-risk groups every year. The genomic changes of influenza virus make it susceptible to drug resistance, therefore, continuous monitoring of the influenza virus is highly important in order to recognize the efficacy of available drugs. The current study investigated the neuramin...
متن کاملNeuraminidase gene sequence analysis of avian influenza H9N2 viruses isolated from Iran
Influenza A viruses possesses two virion surface glycoproteins including haemagglutinin (HA) and neuraminidase (NA). The NA plays an important role in viral replication and promotes virus release from infected cells and facilitates virus spread throughout the body. To find out any genomic changes that might be occurred on NA gene of avian influenza circulating viruses, we have genetically analy...
متن کاملThe Potential Effect of Glycyrrhiza Glabra on Early Step of Influenza Virus Replication
Background and Aims: The emergence of drug-resistant influenza viruses has become a serious threat for human and animal populations. Glycyrrhiza glabra (Gg) is a traditional medicine clinically used for the treatment of viral respiratory infection symptoms in most countries. We evaluated the effects of the herb on influenza virus replication in human lung cultured cells (A549) following the det...
متن کاملMolecular Characterization and Phylogenetic Analysis of Neuraminidase Gene in A/H1N1 Influenza Virus Isolates Circulating in Iran, 2014-2015.
Objectives: Influenza is one of the most important emerging and reemerging infectious diseases in the world. The aim of this study is molecular and phylogenetic analyses of the variations in circulating influenza A/H1N1 virus isolates during 2014-2015 in Iran and investigate on the drug resistance conditions in the related Iranian isolates. Material and Methods: Throat samples from Iranian pat...
متن کاملStructure Optimization of Neuraminidase Inhibitors as Potential Anti-influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies
The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and dru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017